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SUMMARY 

A high resolution finite element method for the solution of problems involving high speed compressible flows 
is presented. The method uses the concepts of flux-corrected transport and is presented in a form which is 
suitable for implementation on completely unstructured triangular or tetrahedral meshes. Transient and 
steady-state examples are solved to illustrate the performance of the algorithm. 

INTRODUCTION 

Over the past few years, there has been an ongoing interest in the application of unstructured grid 
finite element methods to the solution of problems of high-speed compressible flow. In this area, the 
authors'-3 have proposed a two-step explicit implementation of a second order Taylor-Galerkin 
procedure4s5 and have used this approach to solve successfully a variety of inviscid and viscous 
problems. The addition of artificial viscosity is required to stabilize this solution procedure when it 
is applied to the analysis of problems involving strong discontinuities, and this has the effect of 
spreading flow discontinuities over several computational cells. 

Solution methods based upon high resolution schemes6-" give sharper definition of flow 
discontinuities, and are supposedly more robust. In two and three dimensions, these methods are 
generally implemented by using operator splitting and applying one-dimensional concepts in each 
co-ordinate direction separately. The finite element practitioner, however, finds difficulty in 
operating in this same manner, as the use of unstructured grids makes this approach impractical. 
The one high resolution method which can be used directly on unstructured grids in Zalesak's'' 
multidimensional generalization of the one-dimensional flux-corrected transport (FCT) ideas of 
Boris and B ~ o k . ' ~ - ' ~ T h i s  method employs a high-order scheme together with a low-order scheme 
and attempts to combine these in such a way that the high-order solution is used in smooth regions 
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of the flow, whereas the low-order solution is favoured near discontinuities. The low-order scheme 
should produce monotonic results for the problem to be solved. Erlebacher16 and Parrott and 
Christie” showed how FCT ideas could be interpreted in the finite element context for a single 
governing equation and implemented on triangular meshes. Our contribution is the extension of 
the technique to deal with the solution of a system of equations and the formulation of a scheme 
with high temporal accuracy, which is well-suited for the analysis of transient problems. The 
numerical examples presented to demonstrate the performance of the algorithm involve the 
solution of both steady and transient flows of inviscid and viscous fluids. 

THE EQUATIONS OF COMPRESSIBLE FLOW 

The governing equations of compressible flow can be written in the conservation form 

dU dFa dF! -+>=- 
at axj  ax j ’  

where the summation convention has been employed and 

Here p ,  p ,  e, T and k denote the density, pressure, specific total energy, temperature and thermal 
conductivity of the fluid, respectively, and ui is the component of the fluid velocity in the direction 
x i  of a Cartesian co-ordinate system. The equation set is completed by the addition of the state 
equations 

p = (y - l ) p [ e  - + u j u j ] ,  T =  [e - )u ju j ]c,  (3) 

which are valid for perfect gas, where y is the ratio of the specific heats and c, is the specific 
heat at constant volume. The components of the viscous stress tensor oij are given by 

and it is assumed that il and p are related by 

THE FLOW S0LVER:FEM-FCT 

As stated above, high resolution, monotonicity preserving schemes must be developed in order to 
be able to simulate the strong non-linear discontinuities present in the flows under consideration. 
Although the pertinent literature abounds with high resolution schemes,6-” only Zalesak’s 
generalization12 of the one-dimensional FCT schemes of Boris and  BOO^'^-'^ can be considered a 
truly multidimensional high resolution scheme. We remark here that the use of unstructured grids 
requires such truly multidimensional schemes, as the lack of lines or planes in the mesh inhibits the 
use of operator splitting. 

Erlebacher16 and Parrot and ChristieI7 first analysed FCT schemes in the context of finite 
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element methods. We develop their ideas further to include the consistent mass, which yields high 
temporal accuracy, and to systems of equations. 

The concept of flux-corrected transport (FCT) 

We consider a set of conservation laws given by a system of partial differential equations of the 
form given equation (l), and assume that the advective fluxes Fa = F " ( U )  play a dominant role over 
the viscous fluxes F' = F' (U) .  For flows described by equation (l), discontinuities in the variables 
may arise (e.g. shocks or contact discontinuities). Any numerical scheme of order higher than one 
will produce overshoots or ripples at such discontinuities (the so-called 'Godunov theorem'' 8).  

Very often, particularly for mildly non-linear systems, these overshoots can be tolerated. However, 
for the class of problems studied here, overshoots will eventually lead to numerical instability, and 
will therefore have to be suppressed. 

The idea behind FCT is to combine a high-order scheme with a low-order scheme in such a way 
that in regions where the variables under consideration vary smoothly (so that a Taylor expansion 
makes sense) the high-order scheme is employed, whereas in those regions where the variables vary 
abruptly the schemes are combined, in a conservative manner, in an attempt to ensure a monotonic 
solution. 

The temporal discretization of equation ( 1 )  yields 

U"" = U "  + AU, (6) 
where A U  is the increment of the unknowns obtained for a given scheme at time t = t". Our aim is to 
obtain a AU of as high an order as possible without introducing overshoots. To this end, we rewrite 
equation (6) as 

(7) Unfl = U" + AU' + (AUh - AU'), 

U"" = U'+(AUh-AU').  (8) 
Here AUh and A U '  denote the increments obtained by some high- and low-order schemes, 
respectively, whereas U' is the monotone, ripple-free solution at time t = t"" of the low-order 
scheme. The idea behind FCT is to limit the second term on the right-hand side of equation (8): 

U"" = U ' +  lim(AUh-AUI), (9) 
in such a way that no new over/undershoots are created. 

It is at this point that a further constraint, given by the conservation law (1) itself must be taken 
into account: strict conservation on the discrete level should be maintained. The simplest way to 
guarantee this for node-centred schemes (and we will only consider those here) is by constructing 
schemes for which the sum of the contributions of each individual element (cell) to its surrounding 
nodes vanishes ('all that comes in goes out'). This means that the limiting process equation (9) will 
have to be carried out in the elements (cells). 

Algorithmic implementation 

We can now define FCT in a quantitative way. We follow Zalesak's exposition,'2 but modify the 
term 'flux' by 'element contribution to a node'. Those more familiar with finite volume or finite 
difference schemes should replace 'element' by 'cell' in what follows. 

FCT consists of the following six algorithmic steps: 
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1. Compute LEC: the 'low-order element contribution' from some low-order scheme guaran- 
teed to give monotonic results for the problem at hand. 

2. Compute HEC: the 'High-order element contribution', given by some high-order scheme. 
3. Define AEC: the 'antidiffusive element contributions': 

AEC = HEC - LEC. 

4. Compute the updated low-order solution: 

U ' =  U " +  C L E C =  U " + A U '  (10) 
el 

5. Limit or 'correct' the AEC so that U"" as computed in step 6 below is free of extrema not 
also found in U 1  or U " :  

AEC' = Cel* AEC, 0 d Cel d 1. (1 1) 

6. Apply the limited AEC: 

U " + ' =  U ' +  CAEC'. 
el 

The limiting procedure 

the following quantities: 
Obviously, the whole approach depends critically on the all-important step 5 above. We define 

(a) P z  : the sum of all positive (negative) antidiffusive element contributions to node I :  

(b) QF : the maximum (minimum) increment (decrement) node I is allowed to achieve in step 6 
above: 

I n a x  

U ' ,  Qf = up'- - 

where UF;: (defined below) represents the maximum (minimum) value the unknown U at 
node I is allowed to achieve in step 6 above 

(c) R': 

min(1, Q+/P'), if P +  > 0, P -  < 0, 
if P " = O .  

R': = 

Now take, for each element: 

R+,  if AEC>O, 
R - ,  if AEC<O. 

Cel = min (element nodes) 

Finally, we obtain UFe in three steps: 

(a) maximum (minimum) nodal U of U" and U ' :  

(b) maximum (minimum) nodal value of element: 
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where A ,  B, . . . , C represent the nodes of element el 
(c) maximum (minimum) U of all elements surrounding node I :  

where 1,2,. . . , m represent the elements surrounding node I .  

This completes the description of the limiting procedure. Up to this point we have been 
completely general in our description, so that equations (6)-( 13) may be applied to any FEM-FCT 
scheme. In what follows, we restrict the exposition to the finite element schemes employed in the 
present work, describing the high and low-order schemes used. 

The high-order scheme: consistent-mass Taylor-Galerkin 

As the high-order scheme, we employ a two-step form'-3 of the one-step Taylor-Galerkin 
schemes described in References 4 and 5. These schemes belong to the Lax-Wendroff class, 
and could be substituted by any other high-order scheme which appears more convenient, 
including implicit schemes. Given the system of equations (l), we advance the solution from t" to 
t n + l  - n - t + At as follows: 

(a)  First step (advective predictor). 

(b) Second step. 

The spatial discretization of (14) and (15) is performed via the classic Galerkin weighted residual 
method,'-3 using linear elements, i.e. three-noded triangles in two dimensions and four-noded 
tetrahedra in three dimensions. For (15) the following system of equations is obtained: 

M,AU" = R", (16) 
where M ,  denotes the consistent mass matrix,'-3 AU the vector of nodal increments and R the 
vector of added element contributions to the nodes. As M ,  possesses an excellent condition 
number, equation (16) is never solved directly, but iteratively, requiring typically three passes5. We 
recast the converged solution of equation (16) into the following form, which will be of use later on: 

M L A U h  = R + (ML - M c ) A U h .  (17) 
Here ML denotes the diagonal, lumped ma~s-matr ix .~ 

The low-order scheme: lumped-mass Taylor-Galerkin plus diffusion 

The requirement placed on the low-order scheme in any FCT-method is monotonicity. The low- 
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order scheme must not produce any artificial, or numerical, 'ripples' or 'wiggles'. It is clear that the 
better the low-order scheme, the easier the resulting task of limiting will be. Therefore an obvious 
candidate for the low-order scheme is Godunov's method.18 However, this scheme would be 
relatively expensive, and its extension to unstructured grids remains unclear. 

We have so far added 'mass-diffusion' to the lumped-mass Taylor-Galerkin scheme in the 
context of FEM-FCT.'9.20 This simplest and least expensive form of diffusion is obtained by 
substracting the lumped mass-matrix from the consistent mass-matrix for linear elements: 

DIFF = Cd(MC - ML) U " .  (18) 

The element matrix thus obtained for two-dimensional triangles is of the form 

Observe that we cannot simply add this diffusion to the high-order scheme in order to obtain 
monotonic results, as a multipoint-coupling of the right-hand side occurs due to the consistent 
mass-matrix employed in the high-order scheme. The imposition of monotonicity can nevertheless 
be achieved by using a lumped mass-matrix instead. As the terms originating from the 
discretization of the fluxes F' in (1) are the same as in (15), the low-order scheme is given by 

Resulting antidiffusive element contributions 

Subtracting (20) from (17) yields the equation 

M , ( A U h  - AU') = R + ( M L  - M c ) A U h  - R - DIFF, 

A U h  - AU' = M i '  (ML - Mc)(Cd U" + A l l h ) .  

(21) 

(22) 
Note that all terms arising from the discretization of the fluxes F' in (l), (15), (20) have now 

disappeared. This is of particular importance if the antidiffusive element contributions must be 
recomputed (small core memory machines), and real gas effects are taken into account (table look- 
up times are considerable) or real viscosity effects have to be included (Navier-Stokes equations). 

or, using equation (18) 

Limiting for systems of equations 

The results available in the literature' 3-1 and our own experience'9320 have shown that, with 
FCT, results of excellent quality can be obtained for a single PDE. However, when trying to extend 
the limiting process to systems of PDEs, no immediately obvious or natural limiting procedure 
becomes apparent. Obviously, for one-dimensional problems one could advect each simple wave 
system separately, and then assemble the solution at the new time step. However, for 
multidimensional problems such a splitting is not possible, as the acoustic waves are circular. 
FDM-FCT codes used for production runs' '*" have so far limited each equation separately, 
invoking operator-splitting arguments. This approach does not always give very good results, as 
may be seen from Sod's comparison of schemes for the Riemann problem,23 and has been a point of 
continuing criticism by those who prefer to use the more costly Riemann-solver-based, essentially 
one-dimensional, TVD It would therefore appear as attractive to introduce 'system 
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character’ for the limiter by combining the limiters for all equations of the system. Many variations 
are possible and can be implemented, giving different performance for different problems. We just 
list some of the possibilities here, commenting on them where empirical experience is available. 

(a) Independent treatment of each equation as in operator-split FCT: this is the least diffusive 
method, tending to produce an excessive amount of ripples in the non-conserved quantities 
(and ultimately also in the conserved quantities). 

(b) Use of the same limiter (C,,) for all equations: this produces much better results, seemingly 
because the phase errors for all equations are ‘synchronized’. This was also observed by 
Harten and Zwaasz4 and Zhmakin and Fursenko” for a class of schemes very similar to 
FCT. We mention the following possibilities: 

(i) 
(ii) 

- 
use of a certain variable as ‘indicator variable’ (e.g. density, pressure, entropy) 
use of the minimum of the limiters obtained for the density and the energy 
(C,, = min (C,,(density), C,,(energy))): this produces acceptable results, although 
some undershoots for very strong shocks are present. This option is currently our 
preferred choice for transient problems. 
use of the minimum of the limiters obtained for the density and the pressure 
C,, = min (C,,(density), CJpressure))): this again produces acceptable results, 
particularly for steady-state problems. 

(iii) 

NUMERICAL EXAMPLES 

Shock over an indentation 

The first problem considered simulates the transient flow field produced by the interaction of a 
strong shock with an indentation in the ground. For this case, the shock Mach number was set to 
M ,  = 25, which corresponds to a pressure-jump ratio of about 1: 100. During the transient, pressure 
ratios as high as 1:lOOO result. The problem statement, solution domain, spatial discretization and 
solutions obtained are shown in Figures l(a)-(e). Note that an adaptive refinement scheme for 
transient problemsz6 was used to reduce the overall storage and CPU requirements. 

As the shock travels over the indentation, it produces a bow shock and a rarefaction 
(Figures l(a), (b)). Then, it collides with the right wall of the indentation and bounces back, 
producing several shock/shock and shock/contact discontinuity interactions (Figures l(c), (d)). 
Observe the level of physically relevant detail that the scheme is able to reproduce, e.g. the triple 
shock produced at T = 0.12 (Figures l(d) (e)). The velocity pattern generated by these interactions 
has been magnified in Figure l(e), and shows a large residual vortex, as well as the different shock 
fronts and other discontinuities. We remark that at all times the shocks are captured within 2 to 3 
elements. 

In the present case, we used as limiter for all equations the minimum of the limiters computed for 
the continuity and energy equations. It is found, that for the strong shocks present in such flow 
fields, even a pressure-undershoot of 0.1 per cent will lead to negative pressures. Therefore, the 
pressure is additionally limited artifically in oder to be positive (albeit small) at all times. 

Steady supersonic flow past a circular cylinder 

This problem involves inviscid Mach 3 flow past a circular cylinder. The solution has been 
obtained by relaxing, with local time step, the transient solution towards the final steady state. 
During this iteration process, the grid was adapted three times to the solution by using an adaptive 
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NELEM=5897. NPOIN-3021 

Figure l(a). Shock over indentation: T =  0.04 

mesh regeneration technique.*’ The final grid is shown in Figure 2(a). A detail of the pressure 
coefficient distribution is shown in Figure 2(b), and the variation of pressure coefficient along the 
centre line and over the cylinder surface is given in Figure 2(c). 

Shock-bubble interaction 

This problem is included here to demonstrate a new axisymmetric capability, and also to show 
that not only geometrically complex domains, but also physically complex problems can be 
handled economically by the methodologies developed. Initially, a weak shock ( M ,  = 1.29), coming 
from the left in Figure 3(a), travels into a bubble of heavier material. In the present case, the outer 
medium was assumed to be air, whereas the bubble was assumed to consist of freon. Owing to the 
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NELEM= 1188 I ,  NPOIN=6073 

Figure l(b). Shock over indentation: T =  0.08 

higher density of freon, the shock speed inside the bubble decreases (Figure 3(b)). Whereas the 
outer shock bends over, the inner shock focuses at the right end of the bubble, producing a 
significant overpressure (Figure 3(c)), and initiating a small, circular blast wave (Figure (3(d)). 

Steady supersonic flow over a flat plate 

The fourth problem considered is the steady state solution of supersonic viscous flow over a flat 
plate. The flow conditions correspond identically to one of the cases considered by Carter,z8 using 
a finite difference scheme. The free stream Mach number is 3 and the Reynolds number based on 
the plate length is 1000. The temperature of the plate is assumed constant. The Sutherland viscosity 
lawz9 is used and the initial conditions are chosen to be appropriate to the case of a flat plate 
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NELEM-13433, NPOINd862  

Figure l(c). Shock over indentation: T =  010 

impulsively inserted into the free stream. The mesh used is displayed in (Figure 4(a)), and the 
general features of the solution can be appreciated in the density contour plots shown in 
(Figure 4(b)). The variation of the computed wall pressure distribution is given in (Figure 4(c)). 

CONCLUSIONS 

It has been demonstrated how unstructured grids and high resolution schemes may be combined, 
yielding FEM-FCT. The numerical examples indicate that a high accuracy can be obtained 
economically for problems involving complex domains and/or adaptive mesh refinement. 
Furthermore, the ‘equation-splitting’ employed in classic FCT-codesZ’.22 has been extended by 
coupling or  ‘synchronizing’ the limiters of all the equations involved, without taking recourse to 
more costly Riemann-solver-based monotone schemes. 



FINITE ELEMENT FLUX-CORRECTED TRANSPORT 

NELEMz13852, NPOIN=7065 

1103 

Figure l(d). Shock over indentation: T =  0.12 

Extensions of the present work are under investigation and involve the development of better 
limiters for systems of equations in the context of FEM-FCT, the extension of FEM-FCT to 
implicit or semi-implicit time-stepping schemes,jO and the combination of FEM-FCT with 
unstructured multigrid methods3' for the rapid solution of steady-state problems. 
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Figure I(e). Velocity vectors at T =  0.12 (enlargement) 

Figure 2(a). Steady supersonic flow past a cylinder: mesh 



Figure 2(b). Steady supersonic flow past a cylinder: Pressure coefficient distribution 
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Figure 2(c). Steady supersonic flow past a cylinder: Variation of the pressure coefficient along the centre 
line and over the cylinder surface 
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Figure 3(a). Shock-bubble interaction: T =  0.0 
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Figure 3(b). Shock-bubble interaction: T = 0.6 
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Figure 3(c). Shock-bubble interaction: T =  0.7 
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Figure 3(d). Shock-bubble interaction: T =  0.8 
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Figure 4. Mach 3 flow past a flat plate, Reynolds number. 1000 (a)  mesh; (b) density contours; (c) pressure 
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